
Warringtonfire Holmesfield Road Warrington United Kingdom T: +44 (0)1925 655116 W: www.warringtonfire.com

BS EN ISO 1716:2018

Determination Of The Heat Of Combustion For Building Products

A Report To: Aldom Aluminyum San. Tic. A.S.

Document Reference: 432779

Date: 29th October 2020

Issue No.: 1

Page 1

Executive Summary

Objective

To determine the performance of the following composite when tested in accordance with BS EN ISO 1716: 2018.

Generic Description	Product reference	Thickness	Weight per unit area or application rate			
A composite panel incorporating a layer of mineral filled / flame retardant inorganic A2 grade core bonded & backed with coated, chromium treated aluminium sheet	"ARESBOND U.S.A FR- A2"	4mm	8kg/m²			
Individual components used to	manufacture composite:					
Coating	"Polyvinylidene Fluoride (PVDF) Coating"	First coat - 0.02mm Second coat - 0.01mm	0.07kg/m²			
Primer	"Polyester (PE) Coating"	0.007mm	0.02kg/m ²			
Aluminium	"Aluminium Coil"	0.5mm	1.35kg/m²			
Adhesive	"Bonding Film"	Unwilling to provide	32.5g/m²			
Core	"FR Core A2 Level"	3mm	5.4kg/m²			
Adhesive	"Bonding Film"	Unwilling to provide	32.5g/m ²			
Aluminium	"Aluminium Coil"	0.5mm	1.35kg/m²			
Coating	"Polyester (PE) Coating"	0.007mm	0.02kg/m ²			
Please see page 5, 6 & 7 of this	Please see page 5, 6 & 7 of this test report for the full description of the product tested					

Test Sponsor Aldom Aluminyum San. Tic. A. S, Velikoy Sanayi Bolgesi Cerkezkoy, Tekirdag, Turkey

Test Results:	Component part	PCS per mass (MJ/kg)	PCS per area (MJ/m ²)
	Coating	14.7918	1.0354
	Primer	19.3586	0.3872
	Aluminium	0.0000	0.0000
	Adhesive	43.6718	1.4193
	Core	1.5880	8.5752
	Adhesive	43.6718	1.4193
	Aluminium	0.0000	0.0000
	Coating	19.3586	0.3872

Total product: 1.5980 13.2236

13th & 16th September 2019 & 3rd March 2020 & 28th August 2020 **Date of Test**

Document No.: 432779 Page No.: 2 of 20

29th October 2020 Author: Issue Date: H Harper

Signatories

Responsible Officer

H. Harper*

Testing Officer

* For and on behalf of Warringtonfire.

Report Issued: 29th October 2020

This version of the report has been produced from a .pdf format electronic file that has been provided by Warringtonfire to the sponsor of the report and must only be reproduced in full. Extracts or abridgements of reports must not be published without permission of Warringtonfire.

Document No.: 432779 Page No.: 3 of 20

29th October 2020 Author: H Harper Issue Date:

CONTENTS	PAGE NO.
EXECUTIVE SUMMARY	2
SIGNATORIES	3
TEST DETAILS	5
DESCRIPTION OF TEST SPECIMENS	6
TEST RESULTS	10
TABLE 1	11
REVISION HISTORY	20

Document No.: 432779 Page No.: 4 of 20

Author: Issue Date: 29th October 2020 H Harper

Test Details

Purpose of test

To determine the calorific potential of a building material during combustion when it is tested in accordance with the test specified in BS EN ISO 1716:2018 "Reaction To Fire Tests For Building Products – Determination Of The Heat Of Combustion".

The test was performed in accordance with the procedure specified in BS EN ISO 1716:2018 and this test report should be read in conjunction with that European Standard.

Scope of test

BS EN ISO 1716 specifies a method of test for determining the heat of combustion of building materials at constant volume in a bomb calorimeter. Results are reported as individual values which may be interpreted by reference to other documents; e.g. EN 13501-1:2018 "Fire Classification of Construction Products and Building Elements Part 1 Classification using Test Data from Reaction to Fire Tests.

The test is intended for materials or products whether composite products or coated products.

Fire test study group/EGOLF

Certain aspects of some fire test specifications are open to different interpretations. The Fire Test Study Group and EGOLF have identified a number of such areas and has agreed Resolutions which define common agreement of interpretations between fire test laboratories which are members of the Groups. Where such Resolutions are applicable to this test they have been followed.

Instruction to test

The test was conducted on the 13th & 16th September 2019 & 3rd March 2020 & 28th August 2020 at the request of Aldom Aluminyum San. Tic. A.S., the sponsor of the test.

Provision of test specimens

The specimens were supplied by the sponsor of the test. Warringtonfire was not involved in any selection or sampling procedure. The results stated in this report apply to the samples as received.

Conditioning of specimens

The specimens were received on the 12^{th} August 2019 & 6^{th} September 2019 & 8^{th} April 2020. Prior to test the prepared specimens were conditioned for at least 48 hours at a temperature of $23 \pm 2^{\circ}$ C and a relative humidity of $50 \pm 5\%$, in accordance with BS EN 13238:2010.

Test procedure

The specimens were tested using an additional combustible substance of known and high calorific value which for this test was paraffin oil. The specimens were tested using the crucible/cigarette method in an isoperibol bomb calorimeter.

The water equivalent (E) of the bomb calorimeter was 0.01009 & 0.01010 & 0.01012MJ/K.

Document No.: 432779 Page No.: 5 of 20

Author: Issue Date: 29th October 2020

Description of Test Specimens

The description of the system given below has been prepared from information provided by the sponsor of the test. This information has not been independently verified by Warringtonfire. All values quoted are nominal, unless tolerances are given.

General descriptio	n	A composite panel incorporating a layer of mineral filled / flame retardant inorganic A2 grade core bonded& backed with a coated,
		chromium treated aluminium sheet.
Product reference	of overall composite	"ARESBOND U.S.A FR-A2"
Name of manufact	urer of overall composite	Aldom Alüminyum San. Tic. A.S.
Overall thickness		4mm (stated by sponsor)
		4.43mm (determined by Warringtonfire)
Overall weight per	unit area	8kg/m ² (stated by sponsor)
		8.71kg/m² (determined by Warringtonfire)
	Generic type	Polyvinylidene fluoride (PVDF)
	Product reference	"Polyvinylidene fluoride (PVDF) Coating"
	Name of manufacturer	See Note 1 below
	Colour reference	"ARW 3808 DARK TEAK"
	Number of coats	2
Coating	Application thickness	First coat – 0.02mm
(test face)		Second coat – 0.01mm
	Application rate per coat	0.07kg/m ²
	Specific gravity	1.6-1.8 (dry)
	Application method	Coil coating
	Curing process per coat	30 seconds at 250°C
	Flame retardant details	See Note 2 below
	Generic type	Solvent based paint
	Product reference	"Polyester (PE) Coating"
	Name of manufacturer	See Note 1 below
	Colour reference	See Note 1 below
	Number of coats	1
Primer	Application thickness	0.007mm
	Application rate	0.02kg/m ²
	Specific gravity	1.42 (dry)
	Application method	Coil coating
	Curing process	30 seconds at 240°C
	Flame retardant details	See Note 2 below

Continued on next page

Document No.: 432779 Page No.: 6 of 20

29th October 2020 Author: Issue Date: H Harper

	Generic type	Aluminium		
	Product reference	"Aluminium Coil"		
	Detailed description /	Each face of the aluminium was coated with		
	composition details	chromic acid to a thickness of 0.008mm		
	composition details	before being cured at a temperature of		
Aluminium		between 120 and 150°C		
	Name of manufacturer	See Note 1 below		
	Thickness	0.5mm		
		1.35kg/m ²		
	Weight per unit area Flame retardant details	The component is inherently flame retardant		
		Adhesive film		
	Generic type			
	Product reference	"Bonding Film"		
	Name of manufacturer	See Note 1 below		
A -U :	Colour reference	"White"		
Adhesive	Application rate /	32.5g/m²		
	thickness	Heat lamination		
	Application method Flame retardant details	See Note 2 below		
		See Note 2 below		
	Curing process			
	Generic type	Fire retardant non-combustible, inorganic mineral core		
	Product reference	"FR Core A2 level"		
		See Note 1 below		
		See Note 1 below		
Core	composition details Name of manufacturer	See Note 1 below		
	Thickness	3mm		
	Weight per unit area Colour reference	5.4kg/m² "Green / White"		
	Flame retardant details	See Note 1 below		
	Generic type	Adhesive film		
	Product reference	"Bonding Film"		
	Name of manufacturer	See Note 1 below		
	Colour reference	"White"		
A dhaairra		1.5		
Adhesive	Application rate /	32.5g/m²		
	thickness	Heat lamination		
	Application method	See Note 2 below		
	Flame retardant details	See Note 2 below See Note 1 below		
	Curing process	Aluminium		
	Generic type	"Aluminium Coil"		
	Product reference Detailed description /	Each face of the aluminium was coated with		
	•			
	composition details	chromic acid to a thickness of 0.008mm		
Aluminium		before being cured at a temperature of between 120 and 150°C		
	Name of manufacturer	See Note 1 below		
	Thickness	0.5mm		
	Weight per unit area	1.35kg/m² The component is inherently flowe retardent.		
1	Flame retardant details	The component is inherently flame retardant		

Continued on next page

Document No.: 432779 Page No.: 7 of 20

Author: H Harper Issue Date: 29th October 2020

	Generic type	Solvent based paint
	Product reference	"Polyester (PE) Coating"
	Name of manufacturer	See Note 1 below
	Colour reference	See Note 1 below
	Number of coats	1
Primer	Application thickness	0.007mm
	Application rate	0.02kg/m ²
	Specific gravity	1.42 (dry)
	Application method	Coil coating
	Curing process	30 seconds at 240°C
	Flame retardant details	See Note 2 below
Brief description o	f manufacturing process	See Note 1 below

- Note 1. The sponsor of the test was unwilling to provide this information.
- Note 2. The sponsor of the test has confirmed that no flame retardant additives were utilised in the production of the component.

432779 Document No.: Page No.: 8 of 20

29th October 2020 Issue Date: Author: H Harper

The specimen was heterogeneous in nature. The specimen comprised three substantial components, three external non substantial components and two internal non substantial components.

The table below gives the thickness and the weight per unit area values of the component parts of the specimen.

Component description	Location / type	Thickness (mm)	Weight / unit area (kg/m²)
PVDF Coating	External non substantial	0.030	0.070
PE Coating	External non substantial	0.007	0.020
Aluminium	Substantial	0.500	1.350
Adhesive	Internal non substantial	Unwilling to provide	0.0325
Core	Substantial	3.000	5.400
Adhesive	Internal non substantial	Unwilling to provide	0.0325
Aluminium	Substantial	0.500	1.350
PE coating	External non substantial	0.007	0.020

Specimen preparation

The sample was composed of a heterogenous material which was impossible to separate into its constituents. The specimens were therefore prepared from individual specimens of the individual constituent parts supplied by the manufacturer, who also provided evidence of the ratio of masses of components in the finished product together with their mass per unit area values. These were then ground and reduced to a fine powder and mixed thoroughly together prior to conditioning for test.

Document No.: 432779 Page No.: 9 of 20

29th October 2020 Author: Issue Date: H Harper

Test Results

Results of test

The test results relate only to the specimens of the product in the form in which they were tested. Small differences in the composition of the product may significantly affect the performance during the test and may therefore invalidate the test results. Care should be taken to ensure that any product which is supplied or used is fully represented by the specimens which were tested.

The test results relate to the behaviour of the test specimen of a product under the particular conditions of the test; they are not intended to be the sole criterion for assessing the potential fire hazard of the material in use.

The test results are given in Table 1 of this report.

Results on component layers already tested

The table below details the results of previous analysis of calorific value for the component part/s being evaluated in this report:

These results are used in this report to provide total product evaluation.

Copies of all test reports are held on our confidential file at Warringtonfire.

Component part	Report No.	Average Calorific Value (MJ/kg)	Average Calorific Value (MJ/m²)
PVDF Coating	418671	14.7918	1.0354
PE Coating	428246	19.3586	0.3872
Aluminium	Not applicable	0.0000	0.0000
Adhesive	417768	43.6718	1.4193
Core	417767	1.5880	8.5752
Adhesive	417768	43.6718	1.4193
Aluminium	Not applicable	0.0000	0.0000
PE coating	428246	19.3586	0.3872

Validity

The specification and interpretation of fire test methods are the subject of ongoing development and refinement. Changes in associated legislation may also occur. For these reasons it is recommended that the relevance of test reports over five years old should be considered by the user. The laboratory that issued the report will be able to offer, on behalf of the legal owner, a review of the procedures adopted for a particular test to ensure that they are consistent with current practices, and if required may endorse the test report.

This report may only be reproduced in full. Extracts or abridgements shall not be published without permission of Warringtonfire.

Document No.: 432779 Page No.: 10 of 20

29th October 2020 Author: H Harper Issue Date:

Client: Issue No : Aldom Aluminium San. Tic. A.S.

Table 1

Table 1 - Bomb Calorimeter Calculations

Product / Layer Description

The product is heterogenous and fabricated as follows:

Component Part	Туре	Description
1	External Non Substantial	PVDF Coating
2	External Non Substantial	PE Coating
3	Substantial	Aluminium
4	Internal Non Substantial	Adhesive
5	Substantial	Core
6	Internal Non Substantial	Adhesive
7	Substantial	Aluminium
8	External Non Substantial	PE Coating

Component Part 1 Coating (External Non Substantial)

Mass of sample:-0.0700 kg/m²

Results obtained:-

<u>Test 1:-</u>	sample weight = calorific value = temperature rise =	0.7114 14.8443 2.4421	g MJ/kg °C	=	14844.3	kJ/kg
<u>Test 2:-</u>	sample weight = calorific value = temperature rise =	0.7138 14.7310 2.5090	g MJ/kg °C	=	14731.0	kJ/kg
<u>Test 3:-</u>	sample weight = calorific value = temperature rise =	0.7288 14.8001 2.5144	g MJ/kg °C	=	14800.1	kJ/kg
				Average =	14791.8 <u>14.7918</u>	kJ/kg MJ/kg

Document No.: 432779 Page No.: 11 of 20

Issue Date: 29th October 2020 Author: H Harper

Gross Calorific Potential Per Unit Area

(Calorific value x mass per unit area)

Test 1:- 1039.1010 kJ/m² Test 2:- 1031.1700 kJ/m² Test 3:- 1036.0070 kJ/m²

> Average gross calorific potential = 1035.4 kJ/m² 1.0354 MJ/m²

PE Coating (External Non Substantial) **Component Part 2**

0.02000 kg/m² Mass of sample:-

Doculte obtained:

Results obt	<u>:ained:-</u>					
<u>Test 1:-</u>	sample weight = calorific value = temperature rise =	0.7221 19.4410 2.7825	g MJ/kg °C	=	19441.0	kJ/kg
<u>Test 2:-</u>	sample weight = calorific value = temperature rise =	0.7239 19.2857 2.7780	g MJ/kg °C	=	19285.7	kJ/kg
<u>Test 3:-</u>	sample weight = calorific value = temperature rise =	0.7184 19.3490 2.8181	g MJ/kg °C	=	19349.0	kJ/kg
				Average =	19358.6 <u>19.3586</u>	kJ/kg <u>MJ/kg</u>

Gross Calorific Potential Per Unit Area

(Calorific value x mass per unit area)

Test 1:-388.8200 kJ/m² Test 2:-385.7140 kJ/m² Test 3:-386.9800 kJ/m²

> Average gross calorific potential = 387.2 kJ/m² 0.3872 MJ/m²

Document No.: 432779 Page No.: 12 of 20

29th October 2020 Author: H Harper Issue Date:

Component Part 3 Aluminium (Substantial)

Mass of sample:-1.3500 kg/m²

Results obtained:-

<u>Test 1:-</u>	sample weight = calorific value = temperature rise =	0.0000 0.0000 0.0000	g MJ/kg °C	=	0.0000	kJ/kg
<u>Test 2:-</u>	sample weight = calorific value = temperature rise =	0.0000 0.0000 0.0000	g MJ/kg °C	=	0.0000	kJ/kg
<u>Test 3:-</u>	sample weight = calorific value = temperature rise =	0.0000 0.0000 0.0000	g MJ/kg °C	=	0.0000	kJ/kg
				Average =	0.0000 <u>0.0000</u>	kJ/kg MJ/kg

Gross Calorific Potential Per Unit Area

(Calorific value x mass per unit area)

Test 1:-0.0000 kJ/m² 0.0000 kJ/m² Test 2:-0.0000 kJ/m² Test 3:-

> Average gross calorific potential = 0.0000 kJ/m² 0.0000 MJ/m²

Document No.: 432779 Page No.: 13 of 20

Issue Date: 29th October 2020 Author: H Harper

Adhesive (Internal Non substantial) Component Part 4

Mass of sample:-0.0325 kg/m²

Results obtained:-

<u>Test 1:-</u>	sample weight = calorific value = temperature rise =	0.7184 43.6838 4.6633	g MJ/kg °C	=	43683.8	kJ/kg
<u>Test 2:-</u>	sample weight = calorific value = temperature rise =	0.7132 43.5754 4.4831	g MJ/kg °C	=	43575.4	kJ/kg
<u>Test 3:-</u>	sample weight = calorific value = temperature rise =	0.7108 43.7562 3.0850	g MJ/kg °C	=	43756.2	kJ/kg
				Average =	43671.8 43.6718	kJ/kg <u>MJ/kg</u>

Gross Calorific Potential Per Unit Area

(Calorific value x mass per unit area)

Test 1:- 1419.7235 kJ/m² Test 2:- 1416.2005 kJ/m² Test 3:- 1422.0765 kJ/m²

> Average gross calorific potential = 1419.3 kJ/m² 1.4193 MJ/m²

Document No.: 432779 Page No.: 14 of 20

29th October 2020 Issue Date: Author: H Harper

Core (Substantial) Component Part 5

Mass of sample:-	5.4000	kg/m²
------------------	--------	-------

Results obtained:-

	<u> </u>					
<u>Test 1:-</u>	sample weight = calorific value = temperature rise =	0.7090 1.5498 1.5730	g MJ/kg °C	=	1549.8	kJ/kg
<u>Test 2:-</u>	sample weight = calorific value = temperature rise =	0.7388 1.6497 1.6027	g MJ/kg °C	=	1649.7	kJ/kg
<u>Test 3:-</u>	sample weight = calorific value = temperature rise =	0.7199 1.5645 1.4672	g MJ/kg °C	=	1564.5	kJ/kg
				Average =	1588.0 <u>1.5880</u>	kJ/kg <u>MJ/kg</u>

Gross Calorific Potential Per Unit Area

(Calorific value x mass per unit area)

Test 1:- 8368.9200 kJ/m² Test 2:- 8908.3800 kJ/m² Test 3:- 8448.3000 kJ/m²

> Average gross calorific potential = 8575.2 kJ/m² 8.5752 MJ/m²

432779 Page No.: 15 of 20 Document No.:

Issue Date: 29th October 2020 Author: H Harper

Adhesive (Internal Non Substantial) Component Part 6

Mass of sample:-		0.0325	kg/m²			
<u>Test 1:-</u>	sample weight = calorific value = temperature rise =	0.7184 43.6838 4.6633	g MJ/kg °C	=	43683.8	kJ/kg
<u>Test 2:-</u>	sample weight = calorific value = temperature rise =	0.7132 43.5754 4.4831	g MJ/kg °C	=	43575.4	kJ/kg
<u>Test 3:-</u>	sample weight = calorific value = temperature rise =	0.7108 43.7562 3.0850	g MJ/kg °C	=	43756.2	kJ/kg
				Average =	43671.8 <u>43.6718</u>	kJ/kg <u>MJ/kg</u>

Gross Calorific Potential Per Unit Area

(Calorific value x mass per unit area)

Test 1:- 1419.7235 kJ/m² Test 2:- 1416.2005 kJ/m² Test 3:- 1422.0765 kJ/m²

> Average gross calorific potential = 1419.3 kJ/m² 1.4193 MJ/m²

432779 Document No.: Page No.: 16 of 20

29th October 2020 Author: Issue Date: H Harper

Component Part 7 Aluminium (Substantial)

Mass of sa	mple:-	1.3500	kg/m²			
<u>Test 1:-</u>	sample weight = calorific value = temperature rise =	0.0000 0.0000 0.0000	g MJ/kg °C	=	0.0000	kJ/kg
<u>Test 2:-</u>	sample weight = calorific value = temperature rise =	0.0000 0.0000 0.0000	g MJ/kg °C	=	0.0000	kJ/kg
<u>Test 3:-</u>	sample weight = calorific value = temperature rise =	0.0000 0.0000 0.0000	g MJ/kg °C	=	0.0000	kJ/kg
				Average =	0.0000 <u>0.0000</u>	kJ/kg <u>MJ/kg</u>

Gross Calorific Potential Per Unit Area

(Calorific value x mass per unit area)

Test 1:- 0.0000 kJ/m²
Test 2:- 0.0000 kJ/m²
Test 3:- 0.0000 kJ/m²

Average gross calorific potential = 0.0000 kJ/m^2 0.0000 MJ/m^2

Document No.: 432779 Page No.: 17 of 20

Author: H Harper Issue Date: 29th October 2020

Client: Aldom Aluminium San. Tic. A.S. Issue No.: 1

0249

PE Coating (External Non Substantial) Component Part 8

Mass of sa	ample:-	0.0200	kg/m²			
<u>Test 1:-</u>	sample weight = calorific value = temperature rise =	0.7221 19.4410 2.7825	g MJ/kg °C	=	19441.0	kJ/kg
<u>Test 2:-</u>	sample weight = calorific value = temperature rise =	0.7239 19.2857 2.7780	g MJ/kg °C	=	19285.7	kJ/kg
<u>Test 3:-</u>	sample weight = calorific value = temperature rise =	0.7184 19.3490 2.8181	g MJ/kg °C	=	19349.0	kJ/kg
				Average =	19358.6 <u>19.3586</u>	kJ/kg MJ/kg

Gross Calorific Potential Per Unit Area

(Calorific value x mass per unit area)

Test 1:-388.8200 kJ/m² Test 2:-385.7140 kJ/m² Test 3:-386.9800 kJ/m²

> 387.2 kJ/m² Average gross calorific potential = 0.3872 MJ/m²

Calculation of Total Calorific Potential (MJ/kg) for the Product

Mass per 1m² of Component 1 Mass per 1m² of Component 2 Mass per 1m² of Component 3 Mass per 1m² of Component 4 Mass per 1m² of Component 5 Mass per 1m² of Component 6 Mass per 1m² of Component 7 Mass per 1m² of Component 8	0.0700 0.0200 1.3500 0.0325 5.4000 0.0325 1.3500 0.0200	kg kg kg kg kg
Total Mass per 1m ² of Product	<u>8.2750</u>	<u>kg</u>

Document No.: 432779 Page No.: 18 of 20

29th October 2020 Author: H Harper Issue Date:

Percentage Mass of Constituent Parts

% Component 1	0.8459	%
% Component 2	0.2417	%
% Component 3	16.3142	%
% Component 4	0.3927	%
% Component 5	65.2568	%
% Component 6	0.3927	%
% Component 7	16.3142	%
% Component 8	0.2417	%
Average Calorific Potential Component 1	14.7918	MJ/kg
Average Calorific Potential Component 2	19.3586	MJ/kg
Average Calorific Potential Component 3	0.0000	MJ/kg
Average Calorific Potential Component 4	43.6718	MJ/kg
Average Calorific Potential Component 5	1.5880	MJ/kg
Average Calorific Potential Component 6	43.6718	MJ/kg
Average Calorific Potential Component 7	0.0000	MJ/kg
Average Calorific Potential Component 8	19.3586	MJ/kg
Contribution of Each Component to Total Calorific Potential		
Component 1	0.1251	MJ/kg
Component 2	0.0468	MJ/kg

Total Calorific Potential for the Total Product

Component 3

Component 4

Component 5

Component 6

Component 7

Component 8

1.5980 MJ/kg

0.0000 MJ/kg

0.1715 MJ/kg

1.0363 MJ/kg

0.1715 MJ/kg

0.0000 MJ/kg

0.0468 MJ/kg

Summary of Results

Component Part	PCS per Mass	PCS per Area	
	(MJ/kg)	(MJ/m²)	
1 PVDF Coating	14.7918	1.0354	
2 PE Coating	19.3586	0.3872	
3 Aluminium	0.0000	0.0000	
4 Adhesive	43.6718	1.4193	
5 Core	1.5880	8.5752	
6 Adhesive	43.6718	1.4193	
7 Aluminium	0.0000	0.0000	
8 PE Coating	19.3586	0.3872	
Total Product	1.5980	13.2236	

432779 19 of 20 Document No.: Page No.:

Issue Date: 29th October 2020 Author: H Harper

Revision History

Issue No:	Re-issue Date:		
Revised By:	Approved By:		
Reason for Revision:			

Issue No:	Re-issue Date:
Revised By:	Approved By:
Reason for Revision:	

Document No.: 432779 Page No.: 20 of 20

Author: H Harper Issue Date: 29th October 2020

Client: Aldom Aluminium San. Tic. A.S. Issue No.: 1

0249